Let's make sensors more individual

30 SPECTRO2-Scope

Changes after Software Update from SPECTRO2-Scope V1.7 to V1.8

Change 1:

THRESHOLD MODE = 2 TRSH has been renamed to **2 TRSH SIG**. The evaluation has remained the same.

THRESHOLD MODE = 2 TRSH SIG:

2 switching thresholds are available in this mode.

Sensor

Switching threshold1(2) = **REF1(2)** – **TOLERANCE 1(2)** Hysteresis threshold1(2) = **REF1(2)** – **HYSTERESIS 1(2)**

When the current **SIG** measurement value falls below switching threshold 1 or 2, the digital output **OUT0** or **OUT1** is set to error. When the current measurement value rises above hysteresis threshold 1 or 2 again, the error output is reset again.

Change 2:

THRESHOLD MODE = 2 TRSH CH was implemented.

CONVERSION CHA BAL CONNECT P	RECORDER SCOPE
HOLD [0-100ms] 10.0 INTLIM CH0 0	DEAD TIME [%] 0 INTLIM CH1 0
THRESHOLD MODE THRESHOLD TRACING	2 TRSH CH
TT UP 100	TT DOWN 100
EXTERN TEACH	
THRESHOLD CALC 1	RELATIVE (%)
TOLERANCE 1 20	HYSTERESIS 1 10
THRESHOLD CALC 2	RELATIVE (%)
TOLERANCE 2 20	HYSTERESIS 2 10

THRESHOLD MODE = 2 TRSH CH:

Two switching thresholds are also available in this mode.

Switching threshold1(2) = REF1(2) - TOLERANCE 1(2) Hysteresis threshold1(2) = REF1(2) - HYSTERESIS 1(2)

In contrast to 2 TRSH SIG, SIG will not be evaluated here, but CH0 and CH1.

If the current measured value **CH0** or **CH1** undercuts the switching threshold 1 or 2, the digital output **OUT0** or **OUT1** will be set to fault.

If the current measured value then exceeds the hysteresis threshold 1 or 2 again, the fault output will be rescinded.

PLEASE NOTE:

OPERATING MODE = DIFFERENTIATOR and **DELTA CH SIG INTEGRATOR** are not available if **THRESHOLD MODE = 2 TRSH CH**, as the process only works with the measured value **SIG** in both cases.

EXTERN TEACH = MAX, MIN and **(MAX+MIN)/2** with **THRESHOLD MODE = 2 TRSH CH** is also not possible, as the min./max. search relates only to **SIG**.

SIG is no longer used to switch the digital outputs, but is still calculated and displayed, as it can be issued in analogue form.

Change 3:

OPERATING MODE = DELTA CH SIG INTEGRATOR was implemented.

With **DELTA CH SIG INTEGRATOR** the deviation of **CH SIG** from a reference value for **CH SIG (REF VAL CH SIG)** is determined, standardized to 4096 and added with 2048.

SIG=(((REF CH SIG – CH SIG) via number SENSITIVITY values) * 4096 / REF CH SIG) + 2048

 $SIG = \frac{\sum_{1}^{Sensitivity}(REF CH SIG - CH SIG)}{REF CH SIG} * 4096 + 2048$

CH SIG: result of the calculation method set under $\ensuremath{\mathsf{EVALUTION}}$ MODE

REF CH SIG: corresponds either with **REF VAL CH SIG** or with **TEACH EXTERNAL = DIRECT** or **DYN** is set to the value of **CH SIG**.

SENSITIVITY determines the summation factor REF CH SIG – CH SIG.

Example:

If e.g. Sensitivity=10 has been set, 10 detected values REF CH SIG – CH SIG are summated.

The sum is standardised to 4096.

The standardised value is added with 2048.

You receive a value of 2048 for SIG if the sum of REF CH0 SIG - CH SIG = 0.

If e.g. the clearance to the surface or the surface property changes, you will receive a peak below or above 2048.

PLEASE NOTE:

The **INTEGRATOR** function is not available with **THRESHOLD MODE = 2 TRSH CH**.